A new approach to permutation polynomials over finite fields
نویسنده
چکیده
Let p be a prime and q a power of p. We study the permutation properties of the polynomial gn,q ∈ Fp[x] defined by the functional equation ∑ a∈Fq (x + a) n = gn,q(x − x). The polynomial gn,q is a q-ary version of the reversed Dickson polynomial in characteristic 2. We are interested in the parameters (n, e; q) for which gn,q is a permutation polynomial (PP) of Fqe . We find several families of such parameters and obtain various necessary conditions on such parameters. The results obtained so far, both theoretical and numerical, indicate that the class gn,q contains an abundance of PPs over finite fields, many of which are yet to be explained and understood. The purpose of this talk is to bring up to date what is known about the permutation properties of gn,q.
منابع مشابه
Specific permutation polynomials over finite fields
We present new classes of permutation polynomials over finite fields. If q is the order of a finite field, some polynomials are of form xrf(x(q−1)/d), where d|(q − 1). Other permutation polynomials are related with the trace function. 2000 Mathematics Subject Classification: Primary 11T06.
متن کاملNew classes of permutation binomials and permutation trinomials over finite fields
Permutation polynomials over finite fields play important roles in finite fields theory. They also have wide applications in many areas of science and engineering such as coding theory, cryptography, combinational design, communication theory and so on. Permutation binomials and trinomials attract people’s interest due to their simple algebraic form and additional extraordinary properties. In t...
متن کاملPermutation Polynomials and Resolution of Singularities over Finite Fields
A geometric approach is introduced to study permutation polynomials over a finite field. As an application, we prove that there are no permutation polynomials of degree 2/ over a large finite field, where / is an odd prime. This proves that the Carlitz conjecture is true for n = 21. Previously, the conjecture was known to be true only for n < 16.
متن کاملReversed Dickson polynomials over finite fields
Reversed Dickson polynomials over finite fields are obtained from Dickson polynomials Dn(x, a) over finite fields by reversing the roles of the indeterminate x and the parameter a. We study reversed Dickson polynomials with emphasis on their permutational properties over finite fields. We show that reversed Dickson permutation polynomials (RDPPs) are closely related to almost perfect nonlinear ...
متن کاملSome New Permutation Polynomials over Finite Fields
In this paper, we construct a new class of complete permutation monomials and several classes of permutation polynomials. Further, by giving another characterization of opolynomials, we obtain a class of permutation polynomials of the form G(x) + γTr(H(x)), where G(X) is neither a permutation nor a linearized polynomial. This is an answer to the open problem 1 of Charpin and Kyureghyan in [P. C...
متن کاملOn constructing permutations of finite fields
Motivated by several constructions of permutation polynomials done by several authors (most notably by Zieve), we propose a unified treatment for a large set of classes of permutation polynomials of Fq. Our approach yields a recipe for constructing several new and old classes of permutation polynomials of Fq.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Finite Fields and Their Applications
دوره 18 شماره
صفحات -
تاریخ انتشار 2012